翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nahm transform : ウィキペディア英語版
Nahm equations
The Nahm equations are a system of ordinary differential equations introduced by Werner Nahm in the context of the ''Nahm transform'' – an alternative to Ward's twistor construction of monopoles. The Nahm equations are formally analogous to the algebraic equations in the ADHM construction of instantons, where finite order matrices are replaced by differential operators.
Deep study of the Nahm equations was carried out by Nigel Hitchin and Simon Donaldson. Conceptually, the equations arise in the process of infinite-dimensional hyperkähler reduction. Among their many applications we can mention: Hitchin's construction of monopoles, where this approach is critical for establishing nonsingularity of monopole solutions; Donaldson's description of the moduli space of monopoles; and the existence of hyperkähler structure on coadjoint orbits of complex semisimple Lie groups, proved by Peter Kronheimer, Olivier Biquard, and A.G. Kovalev.
== Equations ==

Let ''T''1(''z''),''T''2(''z''), ''T''3(''z'') be three matrix-valued meromorphic functions of a complex variable ''z''. The Nahm equations are a system of matrix differential equations
:
\begin
\frac&=()\\()
\frac&=()\\()
\frac&=(),
\end

together with certain analyticity properties, reality conditions, and boundary conditions. The three equations can be written concisely using the Levi-Civita symbol, in the form
:\frac=\frac\sum_\epsilon_()=\sum_\epsilon_T_j T_k.
More generally, instead of considering ''N'' by ''N'' matrices, one can consider Nahm's equations with values in a Lie algebra g.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nahm equations」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.